Phytosanitary diagnostics an essential element of National Plant Protection Service activity in the light of the EU membership

> Janina Butrymowicz The State Plant Health and Seed Inspection Service Central Laboratory

SPHSIS as a national authority is in charge of:

 supervision of the plant health
 prevention a risk related to the use and marketing of plant protection products
 supervision of production and marketing of seed and propagating material

The main duty of the PHSIS in plant health field

 Prevention of the introduction and spread of harmful organisms within Poland and EU

✓ In this process the support of phytosanitary diagnostic to the Plant Protection Service is crucial

The tasks of the Service are realized by the following bodies:

- ✓ <u>at central level</u> the Main Inspector, with the aid of Head Office
- ✓ <u>at regional level</u> the Voivode, with the aid of the Voivodeship Inspector acting as a head of Voivodeship Inspectorate of SPHSIS, being a part of joined voivodeship administration

The laboratory network of SPHSIS is prepared for realization of the official task in the field of plant health and seeds

Laboratory analyses are performed according to:
national legislation
acquis communautaire
international standards (OECD, ISPM, ISTA, EPPO)

- phytosanitary diagnostics
- estimation of seed material
- analysis of plant protection products residues
- GMOs analysis

Three-level diagnostic activity:

workstations at:
field units - 271
border inspection posts - 13
Voivodeship Laboratories - 16
Central Laboratory of MIPHSI

Order of the Main Inspector No. 28/2011

"General rules of performing laboratory analyses of plants, plant products and objects for the presence of harmful organisms"

Diagnostic workstations at field units

- Preliminary estimation of health status of plant material and products
- Sampling for diagnostic purposes

Simple diagnostic methods

 visual examination
 microscopic analysis

 Detection and identification of some insects, nematodes and fungi

Diagnostic network of SPHSIS - BIPs

Diagnostic workstations at BIPs

Sampling in the framework of official inspection of imported consignements

Visual examination of samples.

Dispathing samples to laboratories of SPHSIS for specialistic analysis.

Simple, fast diagnostic methods

Broad scope of diagnostics of plant material in order to detect and identify plant pests, especially quarantine objects •plant material marketed internally within EU material of import origin intended for export surveilances of the territory of Poland

Estimation of seed material and seed potatoes

The most routine analyses in the framework of the official inspection.

Specialistic equipment.

Broad scope of testing methods.

Methods used :

- microscopy
- serological
 IF
 ELISA
- plating method
- biological tests
- biochemical tests
 ✓ R-PAGE
- molecular
 FISH
 PCR

Central Laboratory at Toruń

Divisions:

GMO Analysis
 Analysis of Plant Protection Products Residues
 Phytosanitary Diagnostics

Central Laboratory in Toruń

GMO Analysis Division

Tasks:

 testing of conventional seed material for the presence of genetic modifications (1000 corn and rape samples per year)

Methods:

PCR, Real-TimePCR

Central Laboratory in Toruń

Analysis of Plant Protection Products Residues Division

Tasks:

 analyses within official inspection of plant products– 600-700 fruit and vegetable samples per year
 analyses in the case of incidents

Methods: gas chromatography (CG, CG/SM)
high preassure liquid chromatography (HPLC)
spectrophotometry (UV-VIS) **Central Laboratory in Toruń Phytosanitary Diagnostics**

Technical sections: Bacteriology Virology Mycology Entomology **Nematology** Molecular biology

Central Laboratory in Toruń The laboratory with a reference function

Co-ordination and supervision of the laboratories of the diagnostic network
✓ confirmation of testing results

- controls, including methods implementation and surveillance of their proper use
- training courses
- proficiency testing

test performance studies

verification of testing results

Proficiency tests organized by CL in 2014

Synchytrium endobioticum
Globodera spp.
Longidorus and Xiphinema
Clavibacter michiganensis ssp. sepedonicus
Potato spindle tuber viroid (PSTVd)

Frankliniella occidentalis

Participation in external PT (eg. FAPAS)

Central Laboratory in Toruń Phytosanitary Diagnostics

Laboratory analysys are performed with the use of wide range diagnostic techniques

 Fatty acid analysis of bacteria with gas chromatography
 Detection and identification of various pests with the use of molecular techniques

 Co-operation with research units and laboratories in the field of implementation of new diagnostic methods

Phytosanitary laboratories are obliged to observe the rules determined by:

- Phytosanitary safety requirements Directive 2008/61/EU, EPPO PM 3/64 (1), national regulations
- General requirements for the competence of testing laboratories - EN ISO/IEC 17025:2005
- safety and health at work regulations
- other regulations on environment protection e.g. sewage and solid chemical waste utilization

It is very important for official laboratories to confirm their competence by accreditation, so quality assurance system according to EN ISO/IEC 17025 is being implemented intensively.

Up to day 12 of 17 laboratories of the Service obtained the accreditation certificate.

Moreover, two Seed Testing Laboratories have ISTA accereditation.

The scope of accreditation of Central Laboratory

Erwinia amylovora - DASI-ELISA, IF
 Cms – IF, FISH, FAP
 R. solanacearum – selective isolation, IF, PCR
 Pantoea stewartii subsp. *stewartii* – IF
 Xanthomonas vesicatoria – IF

The scope of accreditation of Central Laboratory

Colletotrichum acutatum – morphometric method
 Phytophthora ramorum - morphometric method
 Synchytrium endobioticum – Jellem method

Plum pox virus - DAS-ELISA, IC-RT-PCR
 Phytoplasmas, the group 16SrX - PCR/RFLP

The scope of accreditation of Central Laboratory

✓ *Diabrotica virgifera* - morphometric method

✓ *Globodera* spp. – extraction and morphometric method, PCR

✓ *Bursaphelenchus xylophilus* - extraction and morphometric method

✓ Longidorus i Xiphinema - extraction and morphometric method

GMO, PPR – flexible scope covering the whole activity

Gradual improvement of the diagnostic capability of the service

- rapid progres in the field of research and development of new modern diagnostic technique
 - new threats
 - restrictive requirements of international standards

force the phytosanitary diagnostic laboratory to make gradual improvement, including: modernization of the existing facilities enhancement of the professionalism of diagnostic staff

Diagnostic activity of the SPHSIS (phytosanitary area)

Number of samples	Number of analyses	CL- samples	CL- analyses
159 151	198 375	9 346	
145 010	184 954	6 656	
146 817	189 018	6 800	
159 760	198 069	6 850	
170 858	211 785	6 518	14 174
	of samples 159 151 145 010 146 817 159 760	of samples of analyses 159 151 198 375 145 010 184 954 146 817 189 018 159 760 198 069	of samples of analyses samples 159 151 198 375 9 346 145 010 184 954 6 656 146 817 189 018 6 800 159 760 198 069 6 850

21.

Bacteriology	2013	2012	2011	2010	2009	2008	2007
Cms	15.249	17.675	17.064	15.807	17.720	18.872	20.841
R. solanacearum	15.251	19.569	18.728	15.644	20.437	18.631	23.293
Erwinia amylovora	274	249	480	451	572	477	563
X. campestris pv. phaseoli	221	285	293	110	303	298	244
X. campestris pv. vesicatoria	91	88	114	56	57	87	125
Cmm	83	40	54	28	50	75	132

Nematology	2013	2012	2011	2010	2009	2008	2007
<i>Globodera</i> spp. - gleba	43.769	42.027	45.997	53.185	28.183	23.721	25.889
D. destructor - ziemniak	6.400	7.052	4.828	4.016	3.855	3.972	4.168
<i>Meloidogyne</i> spp. (kwar.)	3.205	3.713	4.031	4.096	4.175	6.692	6.611
<i>D. dipsaci</i> - gleba	2.382	3.574	2.583	2.410	2.083	2.673	2.524
Longidorus i Xiphinema	2.018	1.578	1.922	2.103	2.109	2.254	2.688
Bursaphelenchus xylophilus	1.985	1.233	1.390	1.824	1.980	1.724	2.285

Mycology	2013	2012	2011	2010	2009	2008	2007
S.endobioticum (gleba)	41.138	40.777	38.391	45.858	32.920	33.280	30.028
P. ramorum	423	399	464	572	508	936	1.765
<i>P. fragariae</i> var. <i>fragariae</i>	357	278	276	612	422	519	746
Monilinia fructicola	71	96	107	180	0	0	0

Virology	2013	2012	2011	2010	2009	2008	2007
	-						
PPV	16.160	11.026	11.064	10.896	11.892	13.372	11.697
39439/00			1				Jak .
ApMLO	2.679	2.543	2.335	2.429	2.906	3.334	8.036
- CAR			125/	1277		41	10/1
PepMV	301 owoce 87, nasiona 152, rośliny 62	346 owoce 156, nasiona 116, rośliny 74	469	443	636	2.365	7.961
PSTVd	283	226	438	199	317	231	349
CSVd	270	204	194	331	193	208	245
		1 1 2	and a	200			
0.0	SAT	Trade	HAT!	10000			

Number of samples infected with quarantine pests

Harmful organism	2013	2012	2011	2010	2009	2008	2007	2006
Clavibacter michiganensis ssp. sepedonicus	1.009	1102	1.005	1.000	1.564	1.914	1.716	2.467
Globodera rostochiensis	224	172	365	251	182	175	386	417
Diabrotica virgifera	62	47	81	22	44	346	137	231
Plum pox virus	122	107	50	63	50	78	70	93
Chrysanthemum stunt viroid	14	3	0	2	0	0	0	49
Synchytrium endobioticum	15	8	36	16	10	15	4	26
Clavibacter michiganensis ssp. michiganensis	0	0	0	0	0	2	6	21
Ditylenchus dipsaci	8	12	53	58	8	37	12	21
Pepino mosaic virus	28 owoce 20, rośliny 6, nasiona 2	59 owoce 35, rośliny 24	52	71	12	351	363	15

Number of samples infected with quarantine pests

Harmful organism	2013	2012	2011	2010	2009	2008	2007	2006
Longidorus spp.	83	9	50	123	13	40	20	15
Ditylenchus destructor	10	21	15	15	0	17	15	19
Xanthomonas campestris pv. phaseoli	41	31	11	4	11	7	14	10
Erwinia amylovora	0	5	7	2	3	0	5	22
Phytophthora fragariae var. fragariae	0	1	1	3	3	2	1	3
Apple proliferatiom MLO	3	5	5	9	3	10	3	2
Phytophthora ramorum	2	0	0	7	0	7	3	0
Monilinia fructicola	13	0	0	12	1	0	0	0

Thank you for your attention